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" CALCULATION OF SECTORIAL PROPERTIES,- SHEAR

CENTRE AND WARPING CONSTANT OF OPEN SEGTIONS
' BY
M. A. SHAMA*

Summary

In nearly gll prolllems dealing with the structural mechanics
of open thin-walled sectioms, the warping coustant, J(w), is
encountered. Its calculation is rather lengthy except for some

special sectians, where symmetry exists.

Jn this paper, the sectoral coordisates of open thin-walled
rections are introduced. These coordinates are used to calculate
the position of the shear centre and the warping constant,-J(Q},
of open thin-walled sections . Mathematical and numeriosl

methods are both used in the course of calculatinus,

The niethods given are applied to some typicél open thin-
walled sections which are normally nsed in ship structures. For
these sections, the position of the shear ceotre and the warping
couttant are caloulated. Open thin-walled sectiens having an
enforced centre of rotztion are also considered. The effect ou the

position of the shear centre and the warping constant of variation

- of geonetry, for two sections. is investigated aund the results

are illustrated graphically.

The geometrical and flesural properties of an open section
are given in the Appendix so as to allow a direct comparison

with the sectorial properties.

* Assoc. Prof., Naval Architecture Depl., Faculty of Eng., Alexandria

Usniversity, Egypt.
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1. Introduction

Thin-walled sections are widely used in aircraft and ship
structures and are becoming very attractive to structural engineers.
The economy achieved through the redaced weight/sirength

ratio ruakes thin-walled sections very desirable (1).

In the structural necbanics of thin-sections, shear, torsion
(2) stability (3) "and warping (4) probleme become | rather
significant, The solution of tﬁe torsion e¢quation requires the
knowledge of the warping comstant J(w). In structures subjected
to torsionmal buckling, the position of the shear centre and the
warping ccostaut, J(w), must be determived befere any solution
could bhe obtained. 'The calculation of the shear and flexulm,l
warping siresses of thin-walled members are also based on’ the

position of the shear centre and the warping constant Jw).

In this paper, the position of the shear cenlre end the
warping oonstant of thin-walled sections are both determined
using the sectorial properties (5). Numerical and direct in.tegration' ‘
are bolh used in the course of calcula_tl'ons. Few examples are
given to illustrate the simplicity of usi.r..lg the sectorial properties
of thir-aslled sections for caiculating the warping constant. Tn
this respect, symmetrical 'and asymmelrical sections are considered

logether with seclions baving an enforced eentre ef rotation.

2 Scctorial Properties of Thin-Walled Sections.

In addition to the geometrical aud flexural properties of

wectiong, i.c. A, 8 | S |1 [T and ] | there are additional unique
Ty Ry xy

characteristics fer thin.walled rections which are called «Sectorial

!



Propertier» (5). These properties ire also associated with area;

moment of area dnd moment of inerija.

The sectorial properties of z thin-walled open section, see
fig. (1), having an arbitrary polz P aud an arbitrary starting

print 0, are as followe (5) :

. . . { '.I 2 . .
- Sectorial area = () - J ‘¢ s om . (2.1
2
where r = the perpendioular distance {rom the pole P to the

tangent at the point uader consideration; see fig. (1).

5; and 8, represeut eud points onthe countour of section.

~ Sectorial static moment = S{ ) = )w dA cmb (2
o A
- Sectorial linear moments |
S((_Q)x = }‘(,) y dA cm? (2
‘_S(Q')yz'\’w x dA m® (2
/. ' |
L Seclorial moment of nertia = J(w " - K wz dA  cm® (2
A

For a thin-walled section bhzving <n» elements, each having
a uniform thickuess «{» and a cousiant «rs,

n S
! 2 | (\'])2 : (258)
3 : | \ | I

t
—

)

.3).

4

.5)
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1), Sactorial Coordinates



It ie to be noted here that onge the sectorial area didgraid
is determined, the seotorial characteristics ol (he section could
be easily caloulated by either direot or vumerical integration.”
In the majority of cases, the integral of the product of two
functjons is required to be evaluated. A simplified method“{or

evaluating this integral is given in Appendix (1).

3. Principal Sectorial Properties of Thin-Walled Sectious,

In the same way as' for the principal centroidal axes,
there is also the principal sectorial coordinates. The pole of the
latter gystem is the <principel pole» or the she.ar centre of the
section, The principal origiu is defined by the «pri'ncipal. radiuss.
The principal sectorial moment of inertia § () is' calculated

using the principal sectorial coordinates,

The <principal pole» and the «principal radiug> are determined

—

from the following conditions:

S(w) :g(,O.dA-:O (3.1)

A, | |

() - g W.Y.dA = 0 (3.2)

R X A . i | ;

S(w ) :'SQ).X,dA - 0 (3. 3)
v T, |

Condition (3.1) gives the direction of the priucipal radins
i.e. the loocation of the cprincipal origin» whereas oonditions
(3.2) and (8.3) give the location of the principal pole, i.e.
the’ she:;r centre. From these conditiona, it is evident that the

scctorial linear momeuts with respect to the principal centroidal
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axes aud a pole coincident with the shear ceutre are zero. The
origin of w i8 of mo importance because if it is shifted; the
sectorial area diagram is changed by a constant whish does not

have any effect on cénd'iltions (3:2) aund (3.3).

Therelore, in order to determine the location of the shear’
centre, a diagram of sectorial area w' for an arbitrary pelo P’ is

drawn. The localion of the sheac centre is given by:

D
i1

Y (3.4)

-[Aco'.Y dA /1]

ey gAw,’X.c‘A/lY (3.5)

where X and Y are the principal ceatroidal axes of the section,

IK and IY are the principal moments of intertia abou.t' .";hc X

and Y axes respeptively,

ey and e, are the ooordinates of the shear cenfre with respect

to the assumed pole P'.

However, if the centroidal axes x and y are not the
principal centroidal axes X,Y, the coordinates of the shear

centre with respect to the assumed pole P! are given by ;

(Ll yv.da-1 et 12y (@3
| yfw V.dA = Ly f a1, - 120 (3.6)
A )A . . .
(Ix.yw).x.d.A-I .((o'ydA)l(II 2y e
Xy -l Xy xy* : ’

A A
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It ig to be noted here that once the geotoriz! area didgrais
is determined, ihe sectorial characteristics ol (he section could
be easily caloulated by either direst or ©vumerical integration.”
In the majority of cases, the integral of the product of two
functions is required to be evaluated. A simplified method{or

evaluating this integral is given in Appendix (1).
3. Principal Sectorial Properties of Thin-Walled Sections,

In the same way as) for the principal ceatroidal axes,
there is =lso the principal sectorial coordinates. The pole of the
latter system is the <principel poles or the shear centre of the
section, The principal origin is defined by the «prfacipal radings.,
The principal sectorial moment of inertia J (w) is* calculated

uting the principal sectorial coordinates,

The <principal pole» and the «principal radiug» are determined

from the following couditions:

S(W) :{u).dA-:o (3.1)
- A . |
S(). = g W.Y.dA = 0 (3.2)

X A - o :
S(w), :‘SQ.X,dA:O (3.3)

A

Coundition (3.1) gives the direction of the principal radius
i.e. the location of the «principal origin» whereas conditions
(3.2) and (3.8) give the location of the prineipzl pole, ice.
the’ shez.xﬂr centre. From these conditions, it is evident that the

sectorial Jinear moments with respect to the principal centroidal
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axes and a pole coincident with the shear centre are zero. The
origin of @ is of mo importance because if it is shifted, the
sectorial area dxagram is changed by a counstant whish does not

have any. effect on conditions (3:2) and (3.3).

Therefore, in order to determine the location of the shear

centre, a diagram of sectorial area ' for an arbitrary ptlo P’ s

drawa. The localion of the shear centre is given by:

Aex = —IACOY dA/[X (3[,)
ey = SAco.IX.c‘A/IY (3.5)

where X and Y are the prinocipal ceatroidal axes of the section,

I\. and ]Y are the priﬁcipal moments of intertia about the X

and Y axes respectively,

ey and ¢, are the ooordinates of the shear centre with respect

to the assumed pole P'.

However, if the centroidal axes x and y are not the
principal gentroidal axes X,Y, the coordinates of the shear

centre with respect to the assumed pole P! are given by ;

)’

.-(Iy~fc6'-y.dA--. Iy ’co di)I(II -12) (3.6)
A :

’A

(Ix.{w,x.dA—lxy.f(oydA)/(I RS NI
A A a
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where Ix’I and I dre the moxznts aud product 6f inertld
y x

¥
about the centroidal axes x.y.

In order to determine the prin:ipal seotorial area diagrhm,
the shear centre is used ss the principal pole and an arbitrary

. o, . . - . ‘
origin O ° is asgumed. The sectorial area disgrm w’/ is calcu-

lated. The principal sectorial area at any point is givenby :
0 =o' + @ (3.8)

where w _ is a constant given by!
c

7/

Tw. = -_g@'dA/AT (3.9)
A

The calculation of the prinoipal seotcrial area dlagram conld
- . ./',,/
be summarised as follows:

i) The f{lexural properties of the section abeut the principal
centroidal axes X, Y or any cenveniert centroidal axes x,y .are

defermined, i.e. I, I, or I , I and I_  in addisioa to the
XY x'y Xy

sestionaj, area A, as given in Appendix (2).

ii) Ckoose an arbitrary pele P! aud an arbitrary: origin O,

and then ealculate the seetorial area diagram w’.

ili) Caloulate the ceordinates of the shear centre relative

to P’ using either expressions (3.4) and (3 5) or (3.6) and (3.7),

depending on whether the axes X,Y or x,y are used.

iv) Using the ealeulated shear centre as the principal pole

and agsuming any arbitrary origin O“, the sectorial area diagram

@'t ig caloulated. o f
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v) The correcting term w  is then calenlated using éxpression
c

(3.9).
vi) The principal sectorial area diagram w i8 then calculated

using expression (3.8).

4. Applications to Some Typical Sections

. The position of the shear centre and the sectorial moment
of inertia, J(w), are calculated f{or the following seotions, using

the principal seotorial area diagram :

&8'— I - Section.

Due to symmelry, see fig. (2); the shear centre coincides

with the centroid of the section, i.e,

ex = eY:O
bl/2
J(w) = ng'dA = [.tf .S (cﬁ,)z ds
A Z.
.. .O. N
s . 4 - R 13 Y
B Y' A .

J(w) could be also calculated vasngz the method given in

Appendix (1) as follows ¢

= d2|

d.b . —Z_ ‘Y"—A_."/

_— - £

1
2 I

~lo

\\‘lr\'\
Qa
o
i

b — Channel section.

Due to symmetry about the X—axis, === fig. (8), we have :
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z

F1g.(2). Sectorial Area Diagram for
I- Section . |
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The shcar centre is, therefore, Iocated slong the X— axis

-at & distance piven by :

ex:-fu)‘r'.dA/ix
»I:
I—d?(c}tH? b.t, 72 )
X - : W ; f
b b
jw/,Y.dA - t, bd g (-s).ds ' - t[.t_D_-Q.j( s ds
1 L { A
A C ' O
o oo tonlodle
Hence, ey = bICA,I3A . 2)
(e = g W dA
.A
d/2 b
- :-2 -I & -d‘ d-s
= 2. (e 5) ‘ds“"z‘f'g(‘?x’?'“z‘
Q - o
_ 2 2 2 |
- IX' ex - tf'b'd_‘(b—,)Bex)/6.~‘,

The variation eof ey and J(w) with geometry are shown
in figs. (4) and (5) respectively.
¢ — Asymmetrical I - gection,

Due to symmetry about the Y —axix, see fig. (6), we have i
. H
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ey = &
A

3

3 _

where I; and ], are the moments of inertia of the top and hottom

. flanges respectively.

1
0]

g W . X.dA = 2t1.v.[ s?ids . 21,
A 2

Hence, ey = (-11.Y1 ‘ 12.Y2)/IY'
where Yy' = d.(2A, « AL) 1 2A;
and Yy =T VY- ey 2diipfly
Yo = d - Y] = d.lj/l
2
J(w) :[ wW” dA
A
| by /2
ey

0
= 1y L1y d2 Ty
for a symmetrical 1 - section

} 2
J(w) = 1y d°r4

Y

b2/2
7 X . ds
_ Jo
b2/2

o

(Yi s)%.ds + th.{ (Y s)¥. ds
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The variation of J(&) with geometry of section is shown in
fig, (7).

d — A T-section with an enforced axis of rotationm.

e

In this case, the ‘enforced axis of rdtatipn -replaces the
shear centre when calculating the principal sectorial area diagram,
sce {ig. (8). The sectorial moment of ineriis is, therefore, given
by :

-bi?

e | (g9 ds =1, d?
J(CO‘):J(,O dA th \d S) . ds = v
A o '

N

e - An asymmetrical section with an enforced axis of rotation
-The sectorial moment of inertia J(w) for the asymmetricai

section shown in fig. (8) is given by :

J{w) :,{(,Ol.d/:\ ' -
e o

A
where . W = W 4 W,
'-uf S
Ct)c T - --]_ W dA - . b.d'Af
Hence™* J(cw ) = | (w 4w, )2 dA
. | .
| 2 2 2
4 Ay
Where .. Ap = d. 1, + b.ty = Ay+ A

<
]
1
Jos
—
o
)
—
w
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f - An asymmetrical section with an enforced axis of

rotation at point G on the opposite side of the face plate,

This is a typical case of an ssymmetrical stiffener subjeoted
to lateral loading. The enforced axis of rotation is at a distance
e from the web of the stiffener and should be within the

plating as the latter cannot deform in its own plane, see fig.(9).

The coordinates of the enforced axis of rétation, in the

plane of the section, are ( —p —~ e); (—Yy,;)- The sectorial

coordinstes of the section are given by :

W =W 4w,
where, €O, = _21\_ (c@’ dAm s oL D WS gA
T A AT A

A method for ocalculating w i3 given in Table (1), using

numerical iutegration. Thus,
wc'=~g«.[€’ll\\,{+(2@-;b).Af]
> T

Hence, the sectorial moment of inertia, J (w), is given by:
’J(C«O):JQ)ZGA :f (w’+wc)2.dA:E C,OZ..dA.\
ZA A A

Table (2) shows a  method for ca.lculating-l(w),- uking
nup erigal Integration, J (w) iy; tbcrcfgro, 85Vcr§ by :
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- 824 -

For an isolated inember, having this type of seotion, the
/ _ ~
shear centre C, see fig. (9), is located ata distance e frem the

web and ] from the ounler plating, as given in reference (6)s

where,
-7 '
o Ap. St lyy . d
2010, 15,0
] Ap.S* 5 ]
~{lx(l/‘ 7 ) - hyld
J:::a

[F'or an enforced axis of rotation lying withiz the onter
plating, the distance j = O.
9. Shear and Flexural Warping Stresses.

The s2ctorial properties of an open thin-walled seotion are

used to calculate the shear and flexural warping stresses as

“follows :
T(wW)
T (W) = ﬁT@.S(w) (5.1)
o (w) = 2 (5.2)
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where, T(w) = warping tors’onal moment;
& o(w) = flexural warping stress
7(w) = shear stress due to flexural warping

B = a mathematical funption introduced by Vlagov (5)

aund is called <Bimomenty

The ealculation of shear &nd flexural warping stresses 1s
not the purpose of this paper but will be considered in detafi in.

a future publication.

6. Concluding Remarks.,

In nearly all problems dealing with the structural niechanics
of open thin-walled sections, the warping coustant J(w) is
- encountered. 'Its caloulation is rather lengthy except for some

special sections, where the symmetry simplifies the cemputations.

‘The calculation of J(w), as well as the positibn of the
-shear ceutre, is greatly simplifiéd when the .seoforial coordinates
of :the gection are :made use of. The sectorial properties of a
section could be determined for both symmetriocal and asymmetrical
sections, even when the scction is constrained to rotate about

an enforced axis of _rotation.

In the course eof calculating the sectorial prépe(ties; _
position of shear centre and the warping constant of d4n open
thin <wwalled ;cction, cither direct or mumerical imtegration cauld
be used. JA method is given to -simplily the use ol numerical
integration ~when one of the fauctions to be infegrated is varying

lincarly over the comtour of the section.

“The mectorial coordinates are used to calculate the warping

constant for some typioal open thin-walled sections normaliy



used in ship struotures. The effect of section parametera on the

location ol the shear centre. and J(o), for a chaonel and an

I-seclion, is investigated and the results are illustrated in a

graphbical form. The presence “of an enforced{ axijs of x:btation",h

for both symmietrical and .asymmetrical sections, has also been

gounsidered.

(&)
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Appendix (1)
The Integral of the Product of Two Functious.

Jn order to perform the following integral,

f.

Ig

0

X.y ds

Where x and y are both funclions of s, it is necessary that
either x or y, or both, are linear {unclions of s. )

If y is the linear function of s. see fig. (10), then :

Y = a +« b.s
S S
and I = fa.x.ds . (b.s.x.ds
\ o o o
S S
:,’a.fx.ds . b Jx.s.ds
o o)

1
—~
[33]
*
o
wn.
o)
~
>



f(s)

a -
fils ' ’ '
{
\ i R )
f(S) : C2+ L/!Xz
____ijl&il:;:" | C E
¢ ; .+
e (Sc)z——*ﬂ
- Sc )y ———i
| 52 ———
b - b= ‘/ fy(s). fo(s) . ds
= AX yc = Ay - XC

H

AG (10), THE. INTEGRAL OF THE PRODUCT OF TWO FUNCTIONS
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If x and y are both linear functionz of s, the integral I

is given by:

Where; y, == value of y at the centroid of x, i.e. at s of x,

x == value of x at the centroid of y! i.e. at 5, of y.
c

It should be noted that the sectorial properlies are normally
given iu terms of the end poiufs of caoh membgr of the thin-
walled section. The ealculation of the sectorial properties of a
section could be, therefore, ba"sed o'n- a simplified expression, as

given by :

P

i |
a2 [y e ) -y 2x5)]

where: x, X

1 "2

two functions; see fig. (10).

Yy and y, are the end ordinates of the'

If, however, the two functions are qxpr_exscd in an analytie
form, direot integration could. be used.

'

Appendix (2)
Geometrical and Flexural properties of a Section.

.These properties are given in the majcrity of text books on
structura]l mechanics (7) and (8) and are given here only for
the saﬁ? of comparison with the corresponding sectorial

properties.

For: any arbitrary sectien having centroidal axes x,y, the

geometrical and flexural properties are giveu by :
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i) Secotional area, A

A A

ii) Firat moment of area about the x and y axes respectively,

i,e,S and S
x y

SX :j y . dA o S\/ :J x . dA. (AZ)
Since x and y are centroidal axes,

J y.dA =0 | Sy ( x.dA =0 (A3)
A T _

W
>
n

These two equnations determine the location of the

centroid of the section,

iii) Second moment of area about the x and y axes,

.iX:Jyz,dA ,._Iyz[ﬂ,dg ‘lxyzfx.y,dA (s
A S YA : A

These geometrical aund flexural properties are used to

calculate the normal and flexural stresses in a uniform member.

These stresses are given by

a. mnormal stress, o
n

On.= PIA - {AS)

provided that St. Venant’s principle has been observed.
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b. shear stress; T,

) < - < N
T, = "SX.IY — Vy.lxy F . vy.lx J)-‘-I,\»“ o (AG)
YT, o2y YT ey - iy
Xy T ony PR Ixcly Xy
c. flexural “stress, o
. Iyly - L. Iy ox = Ly oy
oo Y TRy gy X SN (A7)
b [ 1, 12 " Y Y

Xy Xy X'y Xy
If the coordinate ? axes X, Y are the priacipal jcentroidal

axes, the product of inertia given in (A4) must he zero, i.e

T »5 X Y.da = O . (AB)
XY i _. S
A .

Equation (AB) determines the orientation of the priucipal centro-

idal axes. Sabstituting (A8) into (A6) and (A7), we get :

R (A9;
Tyy = Sy Pyt Iy - Sy Fxhtly |

: ' (A10
op = My Yllg oo My . X1y | )



TABLE (1)

Caloulatian of the sectorial coordinates for an uymmct?ioai

scction having an enforced axis of rotation

fmember | O, o .5 A A D
1 N M } m
1 -2 0 0 0 Ly, 2 0
P75 :
2-2 10 0 0 1,2 0
' Z —
N 2 . A
2-4 0 ed | -edl2 adtyy ~ Ao, 12
| l - L L
4 -5 ~ed | -edsbd | -ed+«bd bty ‘btf(f{;ﬂ— ¢d)
o 5w dh
| o
TABLE (2)
Caloulation of J(w) for an asymmetrical seotion having an
enforced axiz of rotation |
‘ 2 R '
member; o W el o2 aA
57 32 Ny 2
1.2 | w? BE fp WE 2
2-3 co? DY co? Ao 2
: C C C p C
2 -4 w2 (. - ed}‘] (W 9_d_)2 (W lw vo) i/
C C C - 1 m
Co. . . Z 6
n: N PR aYe 2 ( /o2 2 Af
4L -5 (Q)C—ed) (W -ed.bdf {{e -ode 22 Hu oo vaoy ) 2
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Ligt of Nota_tion.

~ A = sectional] area

Af == rectional area of face plate.
Ap = uecciong,l area of outer plating.
AT =— total geotional area.

Aw = geotional area of sveb,

b = width of face platet -

. B = Bimoment.
A
) ¢ = coustaunt. -
d = depth of seclion.

e = distance of shear centrs from outer plating.

e e = ocoordinates of the shear centre relative to the x
aud y axes.
CX cY = coordinates of the shear centre relative to the X

and Y axes.

Fx, Fy. = shear forces in the dircction:_of_ the x and y- axes,
I = intcgral of the product of two: funetions.
}x’ Iy = second moment of area about the.x and y =axes,
respectively.
Ixy__'_'_—_ product of inertia about the x aud ¥ exer.
I_\., ]Y = sccoud moment of area about the X and Y axes,
respectively. s

] = distance of the shear oentre from the welr plating.
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J () = warping constant of a seotion.

M

M, == beuding moments about the x and y axes, respectively.
X’y <
P = normal force.
r = perpecdicular distance from the pole to the tangent
at any point on the contour of the seotion.

S =~ effective breadth of cuter plating.
S, S = momenisof arez about the x and y axes, reapeetively.
X y

S(w) = sectorial static moment,

S<w>x’ S{w) == sectorial linear moments about the x and
y o

y uxes, respectively.

ds == elemontary length on the conteur of a section.

t = thickness.

te = thickuness of faoe plate.
tp = thickness of outer plating.
. = thickness of web plate,

x ,y = centroidal axes; (in Appendix (1) they represent
two functions of s ), o |

X, Y = principal centroidal axes.

x, = ordinate of the function x at the centroid of the
function y.
yC. = ordinate of the functiori y at the oantroid of the

function x

w == sectorial area,
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@, = correcting seolorial ares.

w = mekn segtor'al area
m

T normal stress.

o, = f{lexural stress.

4
o(@) = flexural warping stress.
+ == sghear strees.

Xy

7(w) = warping shear stress,





